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Abstract. A detailed analysis of transverse momentum spectra of several identified hadrons in high energy
collisions within the canonical framework of the statistical model of hadronization is performed. The study
of particle momentum spectra requires an extension of the statistical model formalism used to handle
particle multiplicities, which is described in detail starting from a microcanonical treatment of single
hadronizing clusters. Also, a new treatment of extra strangeness suppression is presented which is based
on the enforcement of fixed numbers of s5 pairs in the primary hadrons. The considered center-of-mass
energies range from ~ 10 to 30 GeV in hadronic collisions (7p, pp and Kp) and from ~ 15 to 35GeV in
eTe™ collisions. The effect of the decay chain following hadron generation is accurately and exhaustively
taken into account by a newly proposed numerical method. The exact py conservation at low energy and
the increasing hard parton emission at high energy bound the validity of the presently taken approach
within a limited center-of-mass energy range. However, within this region, a clear consistency is found
between the temperature parameter extracted from the present analysis and that obtained from fits to
average hadron multiplicities in the same collision systems. This finding indicates that in the hadronization
process the production of different particle species and their momentum spectra are two closely related

phenomena governed by one parameter.

1 Introduction

The idea of a statistical approach to hadron production in
high energy collisions dates back to the ’50s [1] and ’60s
[2] and has recently been revived by the observation that
hadron multiplicities in eTe™ and pp collisions agree very
well with a thermodynamical-like ansatz [3-5]. This find-
ing has also been confirmed in hadronic collisions, and it
has been interpreted in terms of a pure statistical filling of
multi-hadronic phase space of assumed pre-hadronic clus-
ters (or fireballs) formed in high energy collisions, at a crit-
ical value of the energy density [5-7]. In this framework,
temperature and other thermodynamical quantities have
a purely statistical meaning and do not involve the exis-
tence of a hadronic thermalization process through mul-
tiple collisions on an event-by-event basis. Stated other-
wise, statistical equilibrium is an intrinsic feature of the
hadronization process and hadrons are directly created in
such a state [5-7], as was envisaged by Hagedorn [8].

So far, this proposed statistical cluster hadronization
model has mainly been tested against the measured abun-
dances of different hadron species for a twofold reason.
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Firstly, unlike momentum spectra, these are quantities
which are not affected by hard (perturbative) QCD dy-
namical effects but are only determined by the hadroniza-
tion process; indeed, in the framework of a multi-cluster
model, they are Lorentz invariant quantities which are in-
dependent of the cluster’s overall momentum. Secondly,
they are fairly easy to calculate and provide a very sen-
sitive test of the model yielding an accurate determina-
tion of the temperature. However, in order to establish
the validity of the model, it is necessary to test further
observables and to assess their consistency with the re-
sults obtained for multiplicities. One of the best suited
observables in this regard is the transverse momentum of
the identified hadrons (where transverse is meant to be
with respect to the beam line in a high energy hadronic
collision, and the thrust or event axis in high energy ete™
collisions) because, amongst all projections of the particle
momentum, this is supposed to be the one most sensi-
tive to hadronization or, conversely, the least sensitive to
perturbative QCD dynamics.

Actually, it has been known for a long time that trans-
verse momentum spectra follow a Boltzmann distribu-
tion in hadronic collisions and this very observation was
pointed out by Hagedorn as a major indication in favor
of statistical hadron production [9]. It must be empha-
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sized that the prediction of a thermal-like shape in prin-
ciple only applies to particles directly emitted from the
hadronizing source, whereas the measured spectra also in-
clude particles produced by the decays of heavier hadrons.
Yet, due to the involved calculations at play, most analy-
ses do not take into account the distortion of the primor-
dial hadronization spectrum induced by hadronic decays
and try to fit the data straight through it. This problem
has been discussed in the literature [10] and an analyt-
ical calculation has been developed to take into account
the effect of two and three body decays [11,12], which has
then been used both for pp [12] and heavy ion collision
[11-14] including most abundant resonances. In this pa-
per we introduce a new method allowing one to rigorously
and exhaustively determine the contribution of all particle
decays. Thence, by taking advantage of this technique, we
have performed an analysis of many measured transverse
momentum spectra of identified hadrons in a wide range
of center-of-mass energies for several kind of collisions.

This paper is organised as follows: in Sect.2 the sta-
tistical hadronization model is described in detail start-
ing from a basic microcanonical treatment of clusters. In
Sect. 3 the analytical formulae for transverse momentum
spectra of hadrons within the statistical hadronization
model are derived whilst in Sect. 4 they are worked out for
the primary and secondary component separately and the
numerical method used to calculate them is described. In
Sect. 5 and 6 the data analysis is presented and discussed.
Conclusions are drawn in Sect. 7.

2 Statistical hadronization model

The statistical hadronization model assumes that in high
energy collisions, as a consequence of strong interaction
dynamics, a set of colour singlet clusters (or fireballs)
endowed with mass, volume, internal quantum numbers
and momentum, whose distribution is governed by the
dynamical stage of the process, is formed. These clus-
ters are supposed to give rise to hadrons according to
a pure statistical law in the multi-hadronic phase space
defined by their four-momentum, volume and quantum
numbers. This approach differs from another popular clus-
ter hadronization model [15] mainly because clusters are
provided with a volume, so that hadron production is gov-
erned by proper phase space rather than relativistic mo-
mentum space. In this framework, the use of statistical
mechanics and thermodynamical quantities, such as tem-
perature, which needs a spatial dimension besides momen-
tum space in order to be meaningful, is allowed. We em-
phasize once more that the introduction of such quantities
does not entail any thermalization process of hadrons af-
ter their formation and that statistical equilibrium simply
means that all final available quantum mechanical states
are equally likely.

In [5,16] the statistical hadronization model was de-
scribed within a canonical framework, with clusters char-
acterized by temperature and volume instead of mass and
volume. Therein, it was shown that a particular choice of
the probabilities of distributing quantum numbers among
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the clusters and the assumption of a common temperature
lead to a very simple expression for particle multiplicities
and global particle correlations, which are in fact the same
as those relevant to one cluster having as volume the sum
of the volumes of all clusters in their own rest frame. Fur-
thermore, no dependence on single cluster properties nor
on their number is left. The question arises whether such
clusters are actually large enough to allow a canonical
description. In fact, in principle, their mass and volume
might be so small to require a more appropriate micro-
canonical framework, enforcing the exact conservation of
energy and momentum in the calculation of the available
multi-hadronic phase space. In the following, we will prove
that a similar reduction of the expression of particle mul-
tiplicities holds in the microcanonical case, provided that
suitable clusters configuration probabilities occur.

2.1 From microcanonical to canonical ensemble

In the canonical framework of the statistical hadroniza-
tion model, the main tool to derive physical observables
is the partition function Z, which is the sum over all
physical states with fixed quantum numbers weighted by
exp[—FE/T), where E is the energy of the state and T the
temperature!. Similarly, in the microcanonical case, it is
possible to introduce the sum over all physical states with
fixed values of energy-momentum and quantum numbers,
i.e. the density of states {2 which, for the ith cluster, reads

2; = 2:(P;,Q;,Vs)
= Z 54(Pi - Pi%s)(SQiaQi;s7 1=1,---

states

aNa (1)

where P; is the four-momentum of the cluster, V; is its vol-
ume in the frame where four-momentum is P; and Q, =
(Qi1,- -, Qin) is a vector of its n relevant quantum num-
bers; P;.s and Q. are the corresponding quantities of a
general multi-hadronic state which, in the ideal hadron
gas approximation, is described by a set {n;x} 2 of occu-
pation numbers for each hadronic species j and for each
phase space cell k, running from 0 to 1 for fermions and
from 0 to oo for bosons. Hence

Pi;s = § PjikNjk,
ik

Qi;s = qunjkv (2)
ik

where g is the quantum number vector for the jth hadron
and pjj its four-momentum in the kth phase space cell.
The quantum numbers are supposed to be either integer-
valued additive conserved quantities in strong interactions
(namely electric charge, baryon number, strangeness,

! In a covariant formulation this weight is to be replaced by
exp[—f - P] where P is the four-momentum and S the four-
temperature vector

2 Throughout this paper, by {4;} we mean a shorthand for
the vector (A1, -+, Ay), either finite- or infinite-dimensional
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charm and beauty) or positive integer-valued absolute
numbers of valence quarks plus antiquarks. It is worth
remarking that (2; defined in (1) is a number of states
per unit four-momentum cell, thus it is a Lorentz invari-
ant quantity and has to depend on Lorentz scalars only.
Otherwise stated:

‘Qi(Pi’QiaVi) = “Qi(Pi/ainV;/) = Qi(Pi*7Qi>V;*)7 (3)

where P/ is the Lorentz-transformed of P; and V is the
volume in the corresponding frame, while P and V;* are
the four-momentum (M;,0) and the volume respectively
in the cluster’s rest frame.

£2; in (1) can be transformed by means of the integral

representations of Dirac’s and Kronecker’s delta:

1 .
74 /d4x¢ exp[i(P; — Pys) - 4],

/_W /_quszexp Q- Q..) )
(4)

Y (P, — Ppy) =

0Q,.Q,

By plugging (4) into (1), the density of states reads
1 s .

X Z Hexp

{njx} Jk

—ink(pjr -2 + q; - @)} (5)

The calculation now proceeds by taking advantage of the
commutability between sum and product in (5). However,
the sum over occupation number does not converge to
a finite value for bosons as mj, runs from 0 to oco. The
convergence is recovered if the time component of x; is
provided with a negative imaginary part —ie. If we intro-
duce such a term in (5), then the bosonic sums can be
performed and {2; reads

1 +oo—ie 0 5 ™ N
x exp [i(P; - zi + Q; - ¢;) + Fzi, ¢;)], (6)
where
F(zi, ¢; Zlog{l:l:exp [71( Pjk- szFqg i)]}il' (7)

jk

In the above and the following equations the upper sign
applies to fermions and the lower one to bosons. By taking
the continuum limit of the sum over phase space cells,

Vi ,
> =2+ 1)(%)3 /d3p, (8)
k
the function F finally reads
F(xi, ¢;) (9)
Vi Ci(pizitq. b
= Gy 22 + 1) / d*plog[l e~ i(py it du)] 21
J

Vi - in(pszi4q. b,
~ (2n)? @4+ (FyH /d3pe Py @ity b,
7 n=1

553

The density of states (2; can now be used to obtain
physical quantities of interest, for instance the primary
(i.e. directly emitted by the hadronizing source and not
by subsequent hadronic decays) average multiplicity of the
jth hadron species. Since every multi-hadronic state in the
cluster has the same probability, it can easily be proved
that this can be derived multiplying by a fictitious fugacity
A;j the exponential factor exp[—i(pjx - x; + g, - @;)] for all
k in (5), taking the derivative of log {2; with respect to A,
and finally setting A; = 1,

(né) = log £2;(A;)

Aj:l

o, (10)

Most often, the physical quantities to be compared
with experimental measurements are not those relevant
to individual clusters, rather global ones, that is summed
over all clusters in the event. This implies that sums over
clusters with different four-momenta, quantum numbers
and proper volumes must be performed and we are then
led to consider all possible cluster configurations in terms
of P, V* and @ and their probabilities. In the most general
picture, one envisages the formation of a variable number
N of clusters with probability Py. For a fixed N, there
shall be a conditional probability f.({P;, Q;,V;*}) rele-
vant to the configuration {P;,Q,,V;*} of four-momenta
P;, quantum numbers @, and proper volumes V;* (i =
1,---, N); of course, any configuration must fulfill conser-
vation laws, i.e. Y. P; = P and ), Q; = Q where P and
Q are the initial four-momentum and quantum number
vector respectively. The corresponding distribution func-
tion in the variables {P;, Q,,V;} is

PO\ Tr P°
I« ({Pwaszwl}> Hﬁlz7 (11)

3

f{P,Q; Vi) =

where M; = /P? is the mass of the ith cluster and P?
its energy. Thus, the overall average primary multiplicity
of hadron j should be written as the sum of average pri-
mary multiplicities of single clusters (see (10)), in a fixed
configuration, weighted by the configuration probability f
and summed up over all configurations:

N
i) =3 Py (] / PV S| F({PL @, Vi)
N i=1 Q,

N
0
XD 5y o 2N, P Q. Vi)

=1 J

; (12)
Aj=1

where the symbol stands for a

[T, [ d'Pdv; Y |
Nth-uple integration and sum. The function f is in gen-
eral unknown and depends on the dynamics of the cluster
formation process. It can be further expanded according
to the well-known conditional probability decomposition
P(AB) = P(A|B)P(B):

F{P,Q;,Vi}) = g({ b, QY {ViH) H

{vih,  (13)
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where H({V;}) is the probability distribution for the vol-
umes {V;} and g({P;, Q;}|{Vi}) the conditional probabil-
ity distribution of four-momenta and quantum numbers
{P;,Q;} once {V;} are fixed. A considerable simplification
would occur if g were equal to this w function:

w({P;, Q;}{Vi})p (14)
_ 0P - XiP)ig.x.q, 11 0(P))2(P,Q;, Vi)
[Hk >a, fd4Pk9(P;?)9k:} (P ~ SPo)dg.siq,

where 6 is the Heavyside step function. Because of the
identity

N
log £2;(X;)

9 N

8)\

i=1 >\Fl

H“Qf» H

the substitution of g in (13) with w in (14) turns (12) into

(15)

)\*1

(n;) ZPN H/dV (Vi) 5 logQ()\) ,
)\]’:1
(16)
where 2()\;) is defined by
2(X5) (17)
Hz/d‘*m (P)02:(N;) | 64(P — Z;P)dg 5.0, -
i=1 Q;

It is a remarkable fact that 2(1) = 2 is exactly the den-
sity of states of a single large cluster, here defined as the
equivalent global cluster (EGC) with four-momentum P =
>, P;, quantum numbers Q = >, Q; and volume (in the
reference frame where four-momentum is P) V.= 3. V;,
and can thus be written in the same fashion as (2; in (6):

) 1 +oo—ie 0 5 ™ N
Q—glj}l})w/ioo7ledx/dm/iﬂd¢

x exp [i(P -z + Q- ¢) + F(z,9)], as)
where
F(z, ) 19
N (EZ:W)V3 2.0+ 1)/ d®plog[l + e~ iPs @ ey @)L

J

The fact that (2 is the density of states of the EGC can be
proved in an elegant way by showing that the ws in (14)
are just the probabilities of getting a set of four-momenta
{P;} and of quantum numbers {Q);} if a cluster of volume
V, four-momentum P and quantum numbers Q is ran-
domly split into N sub-clusters with fixed volumes {V;}
such that V' = ).V, for they maximize the total en-
tropy. We stress that the additivity of volumes in (19)
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applies to the V;s and not to the proper ones V;* because
the splitting ideally takes place with no spatial overlap be-
tween sub-clusters and Lorentz contraction must be taken
into account. Let now w({ P;, Q;}|{V;i}) p be such unknown
probabilities and let us calculate the probability p of a full
microscopic state assuming, for the sake of simplicity, that
{P;} are discrete variables. According to the basic law of
statistical mechanics, p turns out to be

N 64
=l Q)] i B

1(Pza Qia ‘/z) 7
where w({P;, Q; }|{Vi})p vanishes if P # 3", P, or P? < 0
or @ #>,Q; and

>

{P'L!Qz}

The entropy S = — > plog p should be calculated by sum-
ming over all possible configurations {P;, @, } fulfilling the
constraints on total four-momentum and quantum num-
bers, and, once a configuration is fixed, over all possible
microscopic states of the clusters. Therefore

4
5=- 3 wH S §4(P; — P”)aQ”Q

(20)

w{Pi, Qi {Vib)p = 1. (21)

{P;,Q;} 1=1 states;
N 54
0*(P; — P;.s)d
x log le ) D0:9s;e (22)
N <4
0P, — Pi.s)oo. 0.

= — Z llogw—klogH ( Q‘)Q”Q” ,

(P1,Q,} i=1 !

where the arguments of w and (2; are implied. In the above
equation advantage has been taken of the fact that the
logarithm’s argument is actually independent of the mi-
croscopic states of the clusters. In order to determine the
ws, S must be maximized with respect to all of them with
the constraint Y w = 1. This can be done by means of the
Lagrange multiplier method which leads to the equation

08

+ (23
Pu((P, QIViDr )
N N
=—1—logw— logH54(PZ- - P+ logH 2; +p=0,
i=1 i=1
implying that
N
w X H £2;. (24)
i=1

The above equation, after a due normalization and taking
into account that the ws must vanish if P # Y, P, or P? <
0or Q # >, Q;, coincides with (14) and this proves our
statement. A different proof based on a direct calculation
starting from (17) can be found in Appendix A.

By using (17) with A\; = 1, (14) can be written as

w({P;, Q;}{Vi})p
0P - XiP)éq.5.q, [1,0(P)12%(P;,Q,, XiVi)
B 2(P,Q,V) 7

(25)
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and (12) as
(n;) ZPN/dV H/dv {ViHo(V — ,V;)
B
X a—Ajlog 200, P,Q,V) - (26)

)

Aj=1

= ZPN/thN V) %mg 02X\, P,Q,V)
J

where hy (V) = [I; [ dVi] H{V;})S(V — X;V;) is, by def-
inition, the probablhty distribution for the EGC with vol-
ume V split into N sub-clusters. Since there is no further
effective dependence left on N in the integrand of (26),
one can define h(V) = >y Pvhn(V) so that the aver-
age primary multiplicity of the jth hadron species finally
reads
0
(1) = [ AVR(V) 5108 200, P.Q.V) 1)
3)\ A=l

This a noteworthy result because the multiplicity in (27)
no longer depends on the configuration of all clusters in the
event nor on their number. Instead, it depends on much
fewer parameters, namely only those of the EGC (its total
four-momentum, volume and quantum numbers).

It is apparent from the previous derivation that the
equivalence between a many cluster system and one global
cluster ultimately rests on the occurrence of the config-
uration probabilities (14). Furthermore, it can be real-
ized by inspecting (12)—(17) that the equivalence holds
in general for any observable A (not necessarily a Lorentz
scalar), which can be written, for a given event configura-
tion {P;, Q;,V;}, as follows:

£ (T, (P, @, Vi)
1L, (P, Q,, Vi)

where £ is a linear operation, e.g. derivation or integra-
tion. If this is the case, the observable averaged over all
configurations with the probabilities (14) reads

L(2(P,Q,V))
QP,Q,V) -
Amongst such observables, one of the most important and

general is the multi-hadronic probability distribution. For
a given event configuration {P;, Q,,V;} it reads

A({P;,Q;,Vi}) =

;o (28)

(A) = / AVh(V) (29)

P(Ny,

N Qz( )‘} Pian‘/i)
- 2mH?{ N+1 U0k aw

=1

,Nk)

(30)

In the above expression K is meant to be the total num-
ber of hadron species; A; are complex variables and the
integration is taken on a closed path around the origin;
the function £2;({)\;}) is a generalization of the previously
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used £2;(\;) with the insertion of fictitious fugacities of all
hadron species at the same time. In fact, (30) has the form
required in (28) for the equivalence With EGC to apply.
Equation (30) can be obtained by inverting P’s generating

function G(A1, -+, Ak):
G()\l,"‘,)\K)E Z P(Nh...’NK))\ivl...)\%K
Ny, Nk
= 3 | Postate) A ARE
Ni,,Ng Lstates fixed(N1,,Nk)

N 2,0 PLQy, Vi)
=11 rzi(jPi,Q,-,V» '

- (31)

ANE

Z P(state) A" - -

states

The last equality follows from
K

P(state) H )\j
j=1

which is to be worked out as in (1)—(6).

Besides the reduction in the number of parameters,
the equivalence with EGC has another attracting feature:
for the canonical formalism to be a sufficiently accurate
approximation, only the EGC has to be large, while there
is no need to enforce a similar request for each individual
cluster. Therefore, one would be allowed to treat canon-
ically (as long as cluster-integrated quantities are con-
cerned) even hadronizing systems in wich single clusters
are a priori known to be too small for a canonical treat-
ment to apply individually. In fact, the transition from mi-
crocanonical to canonical ensemble is based on an asymp-
totic expansion of (2 for large values of EGC volume and
mass, through the saddle-point method, in which only the
leading order is retained. To show this, first a rotation
z = iz in the complex hyperplane for the four-dimensional
integration in (18) is performed:

N 64 (P — Pis)dq, .q..,

HA H 2P Qi V)

- (32)

1 +ico+¢e A
2 =lim ——
EI_I% (27Ti)4 /—ioo+e @2
/ﬂ- d"¢ o7 HiQ ¢+ F(—iz,) (33)
= (2m)"
1 +ioco+¢e A
= lim —— pP. log Z
lim L /iooJrs d*zexp[P -z +log Z(z,Q)],
where
1 . . .
2:.Q) = Gz [ doexpliQ- @+ F-iz g (34

One can recognize in (34), by looking at (19) for F', the ex-
pression of the canonical partition function [4,5,16] of an
ideal hadron gas calculated for a complex four-temperature
z. Now, the saddle-point asymptotic expansion of {2 in
(33) can be performed, which, at the leading order, reads

1
(2m)* det H(B, Q)

(2~ exp[P - 3 +log Z(B, Q)]\/ (35)
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where 3 is a four-vector such that

P-z+4logZ(z, Q)] (36)

9
OzH

z=p3

= O7
=B

and H is the hessian matrix dlog Z/9z"0z" calculated for
z = [. Since F(—iz, ¢) is real-valued (see (19)) if z is a
real four-vector and log Z(z, Q) is real too, according to
(34), then (36) states that 8 must be a real four-vector.
Moreover, it has to be a timelike vector for the momentum
integration in (19) to converge. If 3 is identified with the
four-temperature vector (1/7)4, @ being a unit timelike
vector, the second term in (36) is nothing but the expres-
sion, with negative sign, of the mean energy-momentum
of a canonical system with four-temperature (3. In other
words, the temperature can be defined for a microcanon-
ical system (at the lowest order of an asymptotic saddle-
point expansion) equating the given total energy to its
expression for a canonical system having the same volume
V' and the same set of quantum numbers Q. The canonical
expression of the entropy S = P - 5+ log Z can be recog-
nized in (35) so that the well-known Boltzmann formula
is recovered:

n=0,1,23,

0
:PM+ @logZ(Z,Q)

2 x exp S. (37)

The square root factor in (35) can be neglected in the
derivation of most physical observables, such as multiplic-
ities, because it depends on a fractional power of the par-
tition function Z whilst the first factor is an exponential
of it. Altogether, the expressions of multiplicities, multi-
plicity distributions etc. in the canonical ensemble can be
recovered. The canonical partition function (34) can also
be written as follows:

Z(3,Q,V) =Y e luwhucsg g

states

Z /d4peff6'P(54(P - PState)éQsttate

states

— /d‘lpe*ﬁ'PQ(P, Q,V).

(38)

As has been mentioned, the volume V' argument of (2 in
(38) is measured in the frame where the four-momentum
is P. Indeed, there is a subtle difference between what is
meant as a proper volume in the canonical and the micro-
canonical ensemble. In the microcanonical ensemble the
definition is clear because all states have a definite total
momentum and the reference frame where it vanishes can
be chosen. On the other hand, in the canonical ensem-
ble, we can choose a reference frame where 8 = (1/7,0)
but this does not ensure that the total momentum exactly
vanish for all the states (it does so on the average with a
small broadening around 0); hence, the actual proper vol-
ume (measured with P = 0) does not coincide with the
parameter volume used in the canonical partition func-
tion (38) with 8 = (1/T,0). Nevertheless, if we think of a
canonical ensemble as an approximation of a microcanon-
ical ensemble in its rest frame with associated volume V*
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(according to (35)), the four-vector 3 solution of (36) has
vanishing spatial part. This means that the use of proper
frame and proper volume V* in 2 and Z in (35) goes
together with proper four-temperature 5 = (1/7,0).

Two major points are worth being stressed. Firstly, as
we have emphasized, the reduction to an EGC possibly
allows a canonical treatment for Lorentz invariant quan-
tities even though the physical cluster must be treated
microcanonically, and this implies that the temperature
may be a well-defined quantity only in a global sense (at
the level of EGC) while locally, at the level of a single
cluster, one should stick to microcanonically well-defined
concepts such as the energy density. Secondly, a quanti-
tative estimate of how large an EGC should be in terms
of volume and mass for the canonical approximation to
be satisfactory is highly desirable but it is not available
by now. Nevertheless, as the hadron gas has a huge num-
ber of degrees of freedom, it can reasonably be expected
that the validity of a canonical treatment should set in at
relatively low values of volume and mass, though settling
this issue definitely requires very involved microcanonical
calculations. At present, the legitimacy of the canonical
approximation essentially relies on the agreement with the
data.

2.2 Back-boosting clusters

As we have seen, the choice of probabilities (14) for the
configurations of the produced set of clusters is essential
for the canonical approximation to apply. However, those
configuration probabilities are unrealistic because hadrons
emitted in a high energy e*e™ or hadronic collision should
look like coming from one source at rest in the center-of-
mass frame whereas they typically emerge in a two (or
more) jet-like structure (see Fig. 1). Nevertheless, as long
as one is interested in Lorentz invariant quantities such
as particle multiplicities, it is possible to rearrange clus-
ter momenta at leisure because there is no dependence
on them as demonstrated by (3) and (10): the effective
arguments of density of states and, consequently, average
multiplicities, are mass and proper volume of the cluster.
Then, the question arises whether it is possible to find a
suitable rearrangement of the cluster momenta so as to
get an expression for the particle primary multiplicities
equal to those obtained before in (16), (26) and (27) for
the EGC starting from a configuration probability distri-
bution whatsoever instead of the particular one of (14).

This question may be restated more quantitatively as
follows: whether, given a general distribution of cluster
four-momenta such as f, in (11), it is possible to find a
suitable rearrangement of cluster momenta in each event
such that

[]]":[1 / d*p;
= [ﬁ / a*p;

(P @, VP HNO({M:, Q. Vi})  (39)

u({P;, Q;, Vi HO({M;, Q;, Vi™}),
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Fig. 1. Top: the typical configuration of the momenta of clus-
ters in an actual high energy collision. Bottom: the configu-
ration of the momenta of the same clusters originating from
the splitting of one global cluster at rest. The two configura-
tions are indeed equivalent for Lorentz invariant observables
like hadron multiciplities

where u, is a known distribution, M; = \/1712 is the mass
of the ith cluster and O an arbitrary Lorentz invariant
observable dependent on cluster configurations. If the an-
swer was affirmative, the task of reducing calculations of
average Lorentz invariant quantities to those of the EGC
could be accomplished by choosing w, suitably related
to the conditional probabilities w in (14). Thereby, an
effective cluster back-boosting from configurations as in
Fig.1 top to Fig.1 bottom could be achieved. It must
be pointed out, however, that f, and u, cannot be com-
pletely independent of each other. In fact, since O in (39)
is an arbitrary Lorentz invariant observable depending on
{P?}, the marginal distributions f.n ({M;, Q;,V;*}) and
weps ({M;, Q;, V;i*}) obtained by integrating out the direc-
tions of all P;s in Minkowski space, must be equal, i.e.

f*M({MzaQqu*}) = u*M({MinmVi*})) (40)

and this means that the actual f, cannot be completely
arbitrary for the reduction to EGC to apply. This point
will be discussed more in detail later on.

In principle, the distributions f, and u, can be linked
by a linear transformation through an unknown matrix X

depending only on four-momenta directions P, P’ in view
of (40):

[P, Qy ViTY)
N

d*p!
I/

Provided that (40) is fulfilled, there are actually infinitely
many matrices X satisfying (41) and this enables us to set
further requirements. For this purpose, it will be assumed
that the dependence of X on P, and ]51’ is realized only

through Lorentz transformations L of the type (see [17])

(41)
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L = Ra(¢)Ra(0) L3(€),

transforming P! into P;; Ls(€) is a Lorentz boost along

(42)

the 2z axis with positive hyperbolic sector & and Re are
rotations around the kth axis with angles ¢ € [0,27) and
6 € [0, 7] 3. Lorentz transformations of the type (42) allow
to transform the time axis unit vector £ = (1,0,0,0) into
a given arbitrary timelike vector [17]. Conversely, there is
only one Lorentz transformation of this type transforming
P! into P; (see Appendix B). Hence, (41) is rewritten as

N
1/ dLi] XL (L1 (P), Qu Vi), (43)

where dL is the group measure for the Lorentz transfor-
mations of the type (42), namely [18]

R CGRTGRITG

T (44)

Therefore, the problem stated at the beginning of this sub-
section in (39) has been transformed into the quest of a
solution X of the multiple-integral equation (43), which is
formally a Fredholm integral equation of the first kind. If
a solution exists, then (39) is fulfilled for any Lorentz in-
variant observable O. It should be noted that if X satisfies

(43), then
[H / dLZ-] X({Lh) =1,

which can be obtained from (43) by enforcing the normal-
ization constraints on both f, and w.:

N
1> / d*Pav;

=1 Q,

(45)

{Z } ((P.QuV) =1 (16)

Henceforth, we will assume that a solution X of the Fred-
holm integral equation (43) exists and that it is a positive
definite function. In fact, if X > 0, (43) means that f.
is a probability distribution of cluster four-momenta ob-
tained by boosting clusters, primordially generated with
a four-momenta probability distribution wu., with Lorentz
transformations distributed with probability X. The re-
quirement of positive definite X makes the integral equa-
tion (43) not always solvable and it is not difficult to devise
actual examples. For instance, if u, is the distribution as-
sociated with the splitting of an EGC into N sub-clusters
and f, is a distribution characterized by constantly van-
ishing momenta of the clusters, no probability distribution
X is able to transform wu, into f. through (43) because
random boosts to the (small) non-vanishing momenta in-
volved in u, yield non-vanishing momenta as well.

In order to accomplish the reduction of calculations of
average Lorentz invariant quantities to the EGC, we now

3 The axis index k here is not to be confused with the index
i in the following equations referring to the cluster which the
boost is applied to
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have to specify the relationship between w, and w in (14).
As a first step, let us define the new variables

PI=L(R), V=V = VWpn (4D
i a i

along with the distribution u corre